2 resultados para Environmental Chemistry

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polysaccharide natural seed coat from the tree Magonia pubescens, in the form of hydrogel was used to remove metals in aqueous solution. Swelling tests indicate that seed coat presents hydrogel behavior, with maximum water absorption of 292 g water/g. Adsorption experiments performed using Na(+), Mg(2+), K(+), Ca(2+), Cr(3+), Fe(3+) and Zn(2+) demonstrated that the polysaccharide structure has a high capacity to extract these ions from the aqueous solution. Scanning electron microscopy revealed significant morphological changes of the material before and after water contact. Differential scanning calorimetry measurements indicate a signal shift of the water evaporation temperature in the material with adsorbed zinc. X-ray photoelectron spectroscopy analysis combined with theoretical studies by the density functional theory and on Hartree-Fock (HF) level evidence that the metallic ions were adsorbed through coordination with hydroxyl groups of polysaccharide. In the case of Zn(2+) the lowest HF energy was observed for the tetracoordination mode, where Zn(2+) is coordinated by two hydroxyl groups and two water molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH2O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH2O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH2O collection. The Oxyphan (R) fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH2O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO3-, by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-(CD)-D-4) enabled the development of a complete analytical protocol for the CH2O evaluation in air. (C) 2008 Published by Elsevier B.V.